JavaScript is required to for searching.
Skip Navigation Links
Exit Print View
Oracle Solaris 11.1 Administration: ZFS File Systems     Oracle Solaris 11.1 Information Library
search filter icon
search icon

Document Information

Preface

1.  Oracle Solaris ZFS File System (Introduction)

2.  Getting Started With Oracle Solaris ZFS

3.  Managing Oracle Solaris ZFS Storage Pools

4.  Managing ZFS Root Pool Components

5.  Managing Oracle Solaris ZFS File Systems

6.  Working With Oracle Solaris ZFS Snapshots and Clones

7.  Using ACLs and Attributes to Protect Oracle Solaris ZFS Files

8.  Oracle Solaris ZFS Delegated Administration

9.  Oracle Solaris ZFS Advanced Topics

10.  Oracle Solaris ZFS Troubleshooting and Pool Recovery

Resolving ZFS Space Issues

ZFS File System Space Reporting

ZFS Storage Pool Space Reporting

Identifying ZFS Failures

Missing Devices in a ZFS Storage Pool

Damaged Devices in a ZFS Storage Pool

Corrupted ZFS Data

Checking ZFS File System Integrity

File System Repair

File System Validation

Controlling ZFS Data Scrubbing

Explicit ZFS Data Scrubbing

ZFS Data Scrubbing and Resilvering

Resolving Problems With ZFS

Determining If Problems Exist in a ZFS Storage Pool

Reviewing zpool status Output

Overall Pool Status Information

Pool Configuration Information

Scrubbing Status

Data Corruption Errors

System Reporting of ZFS Error Messages

Repairing a Damaged ZFS Configuration

Resolving a Missing Device

Physically Reattaching a Device

Notifying ZFS of Device Availability

Replacing or Repairing a Damaged Device

Determining the Type of Device Failure

Clearing Transient Errors

Replacing a Device in a ZFS Storage Pool

Determining If a Device Can Be Replaced

Devices That Cannot be Replaced

Replacing a Device in a ZFS Storage Pool

Viewing Resilvering Status

Repairing Damaged Data

Identifying the Type of Data Corruption

Repairing a Corrupted File or Directory

Repairing Corrupted Data With Multiple Block References

Repairing ZFS Storage Pool-Wide Damage

Repairing an Unbootable System

11.  Archiving Snapshots and Root Pool Recovery

12.  Recommended Oracle Solaris ZFS Practices

A.  Oracle Solaris ZFS Version Descriptions

Index

Resolving ZFS Space Issues

Review the following sections if you are unsure how ZFS reports file system and pool space accounting. Also review ZFS Disk Space Accounting.

ZFS File System Space Reporting

The zpool list and zfs list commands are better than the previous df and du commands for determining your available pool and file system space. With the legacy commands, you cannot easily discern between pool and file system space, nor do the legacy commands account for space that is consumed by descendent file systems or snapshots.

For example, the following root pool (rpool) has 5.46 GB allocated and 68.5 GB free.

# zpool list rpool
NAME   SIZE  ALLOC   FREE  CAP  DEDUP  HEALTH  ALTROOT
rpool   74G  5.46G  68.5G   7%  1.00x  ONLINE  -

If you compare the pool space accounting with the file system space accounting by reviewing the USED column of your individual file systems, you can see that the pool space that is reported in ALLOC is accounted for in the file systems' USED total. For example:

# zfs list -r rpool
NAME                      USED  AVAIL  REFER  MOUNTPOINT
rpool                    5.41G  67.4G  74.5K  /rpool
rpool/ROOT               3.37G  67.4G    31K  legacy
rpool/ROOT/solaris       3.37G  67.4G  3.07G  /
rpool/ROOT/solaris/var    302M  67.4G   214M  /var
rpool/dump               1.01G  67.5G  1000M  -
rpool/export             97.5K  67.4G    32K  /rpool/export
rpool/export/home        65.5K  67.4G    32K  /rpool/export/home
rpool/export/home/admin  33.5K  67.4G  33.5K  /rpool/export/home/admin
rpool/swap               1.03G  67.5G  1.00G  -

ZFS Storage Pool Space Reporting

The SIZE value that is reported by the zpool list command is generally the amount of physical disk space in the pool, but varies depending on the pool's redundancy level. See the examples below. The zfs list command lists the usable space that is available to file systems, which is disk space minus ZFS pool redundancy metadata overhead, if any.