Skip Navigation Links | |
Exit Print View | |
Developer's Guide to Oracle Solaris 11 Security Oracle Solaris 11.1 Information Library |
1. Oracle Solaris Security for Developers (Overview)
2. Developing Privileged Applications
3. Writing PAM Applications and Services
4. Writing Applications That Use GSS-API
7. Writing Applications That Use SASL
8. Introduction to the Oracle Solaris Cryptographic Framework
9. Writing User-Level Cryptographic Applications
10. Introduction to the Oracle Solaris Key Management Framework
Oracle Solaris Key Management Framework Features
Oracle Solaris Key Management Framework Components
KMF Policy Enforcement Mechanisms
KMF Application Programming Interfaces
A. Secure Coding Guidelines for Developers
B. Sample C-Based GSS-API Programs
The pktool application is an excellent example of how to use the KMF APIs.
This section shows a simple application that uses KMF. This section describes the basic steps that an application needs to take in order to perform some KMF operations. This example assumes that you have experience in C programming and a basic understanding of public key technologies and standards. This example goes through the steps of initializing KMF for use and then creates a self-signed X.509v3 certificate and associated RSA key pair. This example also shows how to use the KMF-enhanced pktool command to verify that the application was successful.
To give the program access to the KMF function prototypes and type definitions, include the kmfapi.h file.
#include <stdio.h> #include <kmfapi.h>
Be sure to include the KMF library in the link step.
$ cc -o kmftest kmftest.c -lkmf
See the kmftypes.h file for definitions of structures and types. This example uses variables of the following KMF types.
Session handle for KMF calls
Return code for all KMF calls
Handle to a KMF key
KMF credential
Make sure this is big enough
Keystore type, such as KMF_KEYSTORE_PK11TOKEN
Key type, such as KMF_RSA
Data record that gets signed
Distinguished name record
Final certificate data record
Variable length integer
The user can verify that the program successfully created the certificate and keypair by using the pktool(1M) utility.
$ pktool list objtype=both Enter pin for Sun Software PKCS#11 softtoken : Found 1 certificates. 1. (X.509 certificate) Label: admin@foobar.com ID: 09:ac:7f:1a:01:f7:fc:a9:1a:cd:fd:8f:d4:92:4c:25:bf:b1:97:fe Subject: C=US, ST=CA, L=Menlo Park, O=Foobar Inc., OU=Foobar IT Office, CN=admin@foobar.com Issuer: C=US, ST=CA, L=Menlo Park, O=Foobar Inc., OU=Foobar IT Office, CN=admin@foobar.com Serial: 0x452BF693 X509v3 Subject Alternative Name: email:admin@foobar.com Found 1 keys. Key #1 - RSA private key: admin@foobar.com
See the libkmf(3LIB) man page for definitions of KMF APIs.
This application performs the following steps:
Before any KMF functions can be called, the application must first use kmf_initialize() to initialize a handle for a KMF session. This handle is used as the first argument to most KMF function calls. It is an opaque data type and is used to hold internal state and context information for that session.
This example application uses the PKCS#11 keystore. Use kmf_configure_keystore() to define a token to use for future operations.
The first step to create a certificate or a PKCS#10 CSR is to generate a keypair. Use kmf_create_keypair() to create both the public and private keys needed and store the private key in the specified keystore. The function returns handles to the application so that the caller can reference the public and private key objects in future operations if necessary.
Once a keypair is established, use kmf_set_cert_pubkey() and kmf_set_cert_version() to populate the template record that is used to generate the final certificate. KMF provides different APIs for setting the various fields of an X.509v3 certificate, including extensions. Use kmf_hexstr_to_bytes(), kmf_set_cert_serial(), kmf_set_cert_validity(), and kmf_set_cert_sig_alg() to set the serial number. The serial number is a KMF_BIGINT record. Use kmf_dn_parser(), kmf_set_cert_subject(), and kmf_set_cert_issuer() to create a KMF_X509_NAME structure.
Because this is a self-signed certificate creation exercise, this application signs the certificate template created above with the private key that goes with the public key in the certificate itself. This kmf_sign_cert() operation results in a KMF_DATA record that contains the ASN.1 encoded X.509v3 certificate data.
Now that the certificate is signed and in its final format, it can be stored in any of the keystores. Use kmf_store_cert() to store the certificate in the PKCS#11 token defined at the beginning of this application. The certificate could also be stored in NSS or an OpenSSL file at this point.
Memory allocated to data structures generated by KMF should be cleaned up when the data structure is no longer needed. KMF provides convenience APIs for properly deallocating memory associated with these objects. The proper cleanup of memory is strongly encouraged in order to conserve resources. Cleanup interfaces include kmf_free_data(), kmf_free_dn(), and kmf_finalize().
Below is the complete source code for this example application, including all of the data types and helper functions. When you compile, be sure to include the KMF library.
/* * KMF Example code for generating a self-signed X.509 certificate. * This is completely unsupported and is just to be used as an example. * * Compile: * $ cc -o keytest keytest.c -lkmf * * Run: * $ ./keytest * * Once complete, the results can be verified using the pktool(1) command: * * $ pktool list * This should show an RSA public key labeled "keytest" and a cert labeled "keytest". * * The objects created by this program can be deleted from the keystore * using pktool(1) also: * * $ pktool delete label=keytest * */ #include <stdio.h> #include <strings.h> #include <fcntl.h> #include <sys/types.h> #include <sys/stat.h> #include <tzfile.h> #include <kmfapi.h> int main(int argc, char *argv[]) { KMF_HANDLE_T kmfhandle; KMF_RETURN ret; char opt, *str = NULL; extern char *optarg; KMF_KEY_HANDLE prikey, pubkey; KMF_CREDENTIAL cred; KMF_ATTRIBUTE attrlist[16]; /* this needs to be big enough */ KMF_KEYSTORE_TYPE kstype; KMF_KEY_ALG keytype; KMF_KEY_HANDLE prik, pubk; KMF_X509_CERTIFICATE certstruct; KMF_X509_NAME certsubject, certissuer; KMF_DATA rawcert; KMF_BIGINT serno; char *token = "Sun Software PKCS#11 softtoken"; char *keylabel = "keytest"; boolean_t readonly = B_FALSE; uint32_t keylen = 1024; uint32_t ltime = SECSPERDAY * DAYSPERNYEAR; /* seconds in a year (see tzfile.h) */ char prompt[1024]; int numattrs; (void) memset(&certstruct, 0, sizeof (certstruct)); (void) memset(&rawcert, 0, sizeof (rawcert)); (void) memset(&certissuer, 0, sizeof (certissuer)); (void) memset(&certsubject, 0, sizeof (certsubject)); /* * Initialize a KMF handle for use in future calls. */ ret = kmf_initialize(&kmfhandle, NULL, NULL); if (ret != KMF_OK) { printf("kmf_initialize failed: 0x%0x\n", ret); exit(1); } /* We want to use the PKCS11 keystore */ kstype = KMF_KEYSTORE_PK11TOKEN; numattrs = 0; kmf_set_attr_at_index(attrlist, numattrs, KMF_KEYSTORE_TYPE_ATTR, &kstype, sizeof (kstype)); numattrs++; /* Indicate which PKCS11 token will be used */ kmf_set_attr_at_index(attrlist, numattrs, KMF_TOKEN_LABEL_ATTR, token, strlen(token)); numattrs++; kmf_set_attr_at_index(attrlist, numattrs, KMF_READONLY_ATTR, &readonly, sizeof (readonly)); numattrs++; ret = kmf_configure_keystore(kmfhandle, numattrs, attrlist); if (ret != KMF_OK) exit (ret); /* Reset the attribute count for a new command */ numattrs = 0; /* * Get the PIN to access the token. */ (void) snprintf(prompt, sizeof (prompt), "Enter PIN for %s:", token); cred.cred = getpassphrase(prompt); if (cred.cred != NULL) { cred.credlen = strlen(cred.cred); kmf_set_attr_at_index(attrlist, numattrs, KMF_CREDENTIAL_ATTR, &cred, sizeof (cred)); numattrs++; } kmf_set_attr_at_index(attrlist, numattrs, KMF_KEYSTORE_TYPE_ATTR, &kstype, sizeof (kstype)); numattrs++; keytype = KMF_RSA; keylen = 1024; keylabel = "keytest"; kmf_set_attr_at_index(attrlist, numattrs, KMF_KEYALG_ATTR, &keytype, sizeof (keytype)); numattrs++; kmf_set_attr_at_index(attrlist, numattrs, KMF_KEYLENGTH_ATTR, &keylen, sizeof (keylen)); numattrs++; kmf_set_attr_at_index(attrlist, numattrs, KMF_KEYLABEL_ATTR, keylabel, strlen(keylabel)); numattrs++; kmf_set_attr_at_index(attrlist, numattrs, KMF_CREDENTIAL_ATTR, &cred, sizeof (cred)); numattrs++; /* * Set the handles so they can be used later. */ kmf_set_attr_at_index(attrlist, numattrs, KMF_PRIVKEY_HANDLE_ATTR, &prik, sizeof (prik)); numattrs++; kmf_set_attr_at_index(attrlist, numattrs, KMF_PUBKEY_HANDLE_ATTR, &pubk, sizeof (pubk)); numattrs++; ret = kmf_create_keypair(kmfhandle, numattrs, attrlist); if (ret != KMF_OK) { printf("kmf_create_keypair error: 0x%02x\n", ret); goto cleanup; } /* * Now the keys have been created, generate an X.509 certificate * by populating the template and signing it. */ if ((ret = kmf_set_cert_pubkey(kmfhandle, &pubk, &certstruct))) { printf("kmf_set_cert_pubkey error: 0x%02x\n", ret); goto cleanup; } /* Version "2" is for an x509.v3 certificate */ if ((ret = kmf_set_cert_version(&certstruct, 2))) { printf("kmf_set_cert_version error: 0x%02x\n", ret); goto cleanup; } /* * Set up the serial number, it must be a KMF_BIGINT record. */ if ((ret = kmf_hexstr_to_bytes((uchar_t *)"0x010203", &serno.val, \ &serno.len))) { printf("kmf_hexstr_to_bytes error: 0x%02x\n", ret); goto cleanup; } if ((ret = kmf_set_cert_serial(&certstruct, &serno))) { printf("kmf_set_cert_serial error: 0x%02x\n", ret); goto cleanup; } if ((ret = kmf_set_cert_validity(&certstruct, NULL, ltime))) { printf("kmf_set_cert_validity error: 0x%02x\n", ret); goto cleanup; } if ((ret = kmf_set_cert_sig_alg(&certstruct, KMF_ALGID_SHA1WithRSA))) { printf("kmf_set_cert_sig_alg error: 0x%02x\n", ret); goto cleanup; } /* * Create a KMF_X509_NAME struct by parsing a distinguished name. */ if ((ret = kmf_dn_parser("cn=testcert", &certsubject))) { printf("kmf_dn_parser error: 0x%02x\n", ret); goto cleanup; } if ((ret = kmf_dn_parser("cn=testcert", &certissuer))) { printf("kmf_dn_parser error: 0x%02x\n", ret); goto cleanup; } if ((ret = kmf_set_cert_subject(&certstruct, &certsubject))) { printf("kmf_set_cert_sig_alg error: 0x%02x\n", ret); goto cleanup; } if ((ret = kmf_set_cert_issuer(&certstruct, &certissuer))) { printf("kmf_set_cert_sig_alg error: 0x%02x\n", ret); goto cleanup; } /* * Now we have the certstruct setup with the minimal amount needed * to generate a self-signed cert. Put together the attributes to * call kmf_sign_cert. */ numattrs = 0; kmf_set_attr_at_index(attrlist, numattrs, KMF_KEYSTORE_TYPE_ATTR, &kstype, sizeof (kstype)); numattrs++; kmf_set_attr_at_index(attrlist, numattrs, KMF_KEY_HANDLE_ATTR, &prik, sizeof (KMF_KEY_HANDLE_ATTR)); numattrs++; /* The X509 template structure to be signed goes here. */ kmf_set_attr_at_index(attrlist, numattrs, KMF_X509_CERTIFICATE_ATTR, &certstruct, sizeof (KMF_X509_CERTIFICATE)); numattrs++; /* * Set the output buffer for the signed cert. * This will be a block of raw ASN.1 data. */ kmf_set_attr_at_index(attrlist, numattrs, KMF_CERT_DATA_ATTR, &rawcert, sizeof (KMF_DATA)); numattrs++; if ((ret = kmf_sign_cert(kmfhandle, numattrs, attrlist))) { printf("kmf_sign_cert error: 0x%02x\n", ret); goto cleanup; } /* * Now we have the certificate and we want to store it in the * keystore (which is the PKCS11 token in this example). */ numattrs = 0; kmf_set_attr_at_index(attrlist, numattrs, KMF_KEYSTORE_TYPE_ATTR, &kstype, sizeof (kstype)); numattrs++; kmf_set_attr_at_index(attrlist, numattrs, KMF_CERT_DATA_ATTR, &rawcert, sizeof (KMF_DATA)); numattrs++; /* Use the same label as the public key */ kmf_set_attr_at_index(attrlist, numattrs, KMF_CERT_LABEL_ATTR, keylabel, strlen(keylabel)); numattrs++; if ((ret = kmf_store_cert(kmfhandle, numattrs, attrlist))) { printf("kmf_store_cert error: 0x%02x\n", ret); goto cleanup; } cleanup: kmf_free_data(&rawcert); kmf_free_dn(&certissuer); kmf_free_dn(&certsubject); kmf_finalize(kmfhandle); return (ret); }