JavaScript is required to for searching.
Skip Navigation Links
Exit Print View
Writing Device Drivers     Oracle Solaris 11.1 Information Library
search filter icon
search icon

Document Information

Preface

Part I Designing Device Drivers for the Oracle Solaris Platform

1.  Overview of Oracle Solaris Device Drivers

2.  Oracle Solaris Kernel and Device Tree

3.  Multithreading

4.  Properties

5.  Managing Events and Queueing Tasks

6.  Driver Autoconfiguration

7.  Device Access: Programmed I/O

8.  Interrupt Handlers

9.  Direct Memory Access (DMA)

10.  Mapping Device and Kernel Memory

11.  Device Context Management

12.  Power Management

Power Management Framework

Device Power Management

System Power Management

Device Power Management Model

Power Management Components

Multiple Power Management Components

Power Management States

Power Levels

Power Management Dependencies

Automatic Power Management for Devices

Device Power Management Interfaces

Busy-Idle State Transitions

Device Power State Transitions

power() Entry Point

System Power Management Model

Autoshutdown Threshold

Busy State

Hardware State

Automatic Power Management for Systems

Entry Points Used by System Power Management

detach() Entry Point

attach() Entry Point

Power Management Device Access Example

Power Management Flow of Control

Changes to Power Management Interfaces

13.  Hardening Oracle Solaris Drivers

14.  Layered Driver Interface (LDI)

Part II Designing Specific Kinds of Device Drivers

15.  Drivers for Character Devices

16.  Drivers for Block Devices

17.  SCSI Target Drivers

18.  SCSI Host Bus Adapter Drivers

19.  Drivers for Network Devices

20.  USB Drivers

21.  SR-IOV Drivers

Part III Building a Device Driver

22.  Compiling, Loading, Packaging, and Testing Drivers

23.  Debugging, Testing, and Tuning Device Drivers

24.  Recommended Coding Practices

Part IV Appendixes

A.  Hardware Overview

B.  Summary of Oracle Solaris DDI/DKI Services

C.  Making a Device Driver 64-Bit Ready

D.  Console Frame Buffer Drivers

E.  pci.conf File

Index

Power Management Flow of Control

Figure 12-1 illustrates the flow of control in the power management framework.

When a component's activity is complete, a driver can call pm_idle_component(9F) to mark the component as idle. When the component has been idle for its threshold time, the framework can lower the power of the component to its next lower level. The framework calls the power(9E) function to set the component's power to the next lower supported power level, if a lower level exists. The driver's power(9E) function should reject any attempt to lower the power level of a component when that component is busy. The power(9E) function should save any state that could be lost in a transition to a lower level prior to making that transition.

When the component is needed at a higher level, the driver calls pm_busy_component(9F). This call keeps the framework from lowering the power still further and then calls pm_raise_power(9F) on the component. The framework next calls power(9E) to raise the power of the component before the call to pm_raise_power(9F) returns. The driver's power(9E) code must restore any state that was lost in the lower level but that is needed in the higher level.

When a driver is detaching, the driver should call pm_lower_power(9F) for each component to lower its power to its lowest level. The framework can then call the driver's power(9E) routine to lower the power of the component before the call to pm_lower_power(9F) returns.

Figure 12-1 Power Management Conceptual State Diagram

image:Diagram shows the flow of control through power management routines.